

Plano de Ensino

DISCIPLINA: Geometria Analítica

CURSO: Licenciatura em Física e Matemática

CARGA HORÁRIA: 80 horas

CÓDIGO DA DISCIPLINA: MGA101

EMENTA

Coordenadas no plano: coordenadas cartesianas retangulares no plano. Distância entre dois pontos. Equação de uma circunferência. Posição relativa de duas circunferências. Coordenadas polares. Vetores no plano: componentes de um vetor, adição de vetores, multiplicação de um vetor por um número real. Vetores linearmente independentes e linearmente dependentes. Produto escalar. Estudo da reta no plano: equação geral da reta. Paralelismo e perpendicularismo. Ângulo. Distância de ponto a reta. Secções cônicas: equações na forma reduzida em coordenadas cartesianas e polares. Mudança de coordenadas no plano. Distância entre dois pontos. Vetores no espaço: coordenadas cartesianas retangulares no espaço, componentes de um vetor; adição e multiplicação por escalar. Vetores l.i. e l.d. Produtos escalar, vetorial e misto. Estudo da reta e do plano no espaço: equação do plano. Paralelismo e perpendicularismo entre planos. Equações de uma reta no espaço. Posições relativas. Ângulos. Distâncias.

OBJETIVOS DA DISCIPLINA

Compreender fundamentos, aplicações, procedimentos e situações passíveis de serem tratadas pela Geometria Analítica. Dominar os conceitos básicos da Geometria Analítica. Identificar retas e planos na forma algébrica, obter resultados geométricos através da álgebra.

CONTEÚDO PROGRAMÁTICO

- 1. Apresentação da Disciplina de Geometria Analítica.
- 2. Sistema de coordenadas cartesianas no plano R2.
- 3. Equação da circunferência.
- 4. Coordenadas polares.
- 5. Vetores no plano.
- 6. Dependência Linear.
- 7. Produto Escalar.
- 8. Estudo da reta (parte 1).
- 9. Estudo da reta (parte 2).
- 10. Cônicas (parte 1).
- 11. Cônicas (parte 2).

- 12. Mudança de coordenadas no plano.
- 13. Sistema de coordenadas cartesianas no espaço R3.
- 14. Vetores no espaço R3.
- 15. Dependência Linear.
- 16. Produto Escalar e Produto Vetorial (área).
- 17. Produto Misto (volume).
- 18. Estudo da reta e do plano (parte 1).
- 19. Estudo da reta e do plano (parte 1).
- 20. Ortogonalidade.
- 21. Posições relativas entre retas, retas e planos e entre planos (parte 1).
- 22. Posições relativas entre retas, retas e planos e entre planos (parte 2).
- 23. Distâncias (parte1).
- 24. Distâncias (parte 2).
- 25. Exercícios (parte 1).
- 26. Exercícios (parte 2).
- 27. Exercícios (parte 3).
- 28. Exercícios (parte 4).

BIBLIOGRAFIA

Bibliografia Básica

CAMARGO, I.; BOULOS, P. Geometria Analítica: Um Tratamento Vetorial. São Paulo: Pearson, 2004.

CALLIOLI, C. A.; DOMINGUES, H. H.; COSTA, R. C. F. Álgebra Linear com Aplicações. São Paulo: Atual, 1990.

WINTERLE, Paulo. Vetores e Geometria Analítica. São Paulo: Pearson, 2014.

Bibliografia Complementar

IEZZI, G. Fundamentos de Matemática Elementar: Volume 7 (Geometria Analítica). São Paulo: Atual, 2013.

MACHADO, A. Matemática Temas e Metas: Volume 5. São Paulo: Atual, 1988.

MELLO, D. A; WATANABE, R. G. Vetores e Uma Iniciação à Geometria Analítica. São Paulo: Livraria da Física, 2011.

PRÉ-REQUISITOS

Não possui.

CRITÉRIOS DE AVALIAÇÃO

A avaliação da disciplina é formativa* e somativa**. Os alunos devem entregar as resoluções de atividades e/ou exercícios no Ambiente Virtual de Aprendizagem semanalmente e realizar, ao final do período letivo, uma prova presencial aplicada nos polos Univesp.

^{*}A avaliação formativa ocorre quando há o acompanhamento dos alunos, passo a passo, nas atividades e trabalhos desenvolvidos, de modo a verificar suas facilidades e dificuldades no processo de aprendizagem e, se necessário, adequar alguns aspectos do curso de acordo com as necessidades identificadas.

^{**}A avaliação somativa é geralmente aplicada no final de um curso ou período letivo. Este tipo de avaliação busca quantificar se o aluno aprendeu aquilo que estava previsto nos objetivos de aprendizagem do curso. Ou seja, a avaliação somativa quer comprovar se a meta educacional proposta e definida foi alcançada pelo aluno.

DOCENTE RESPONSÁVEL

Prof. Dr. Pedro Luiz Fagundes

Possui graduação em Bacharelado em Ciências com Habilitação em Matemática pela Universidade Federal de São Carlos (1983), mestrado em Matemática pela Universidade de São Paulo (1987) e doutorado em Matemática pela Universidade de São Paulo (1996). Atualmente é professor doutor da Universidade de São Paulo. Tem experiência na área de Matemática, com ênfase em Topologia Algébrica, atuando principalmente nos seguintes temas: geometria, jogos, aprendizagem, coincidence theory e revestimento ramificado.